Skip to main content
guest
Join
|
Help
|
Sign In
aero103team1
Home
guest
|
Join
|
Help
|
Sign In
Wiki Home
Recent Changes
Pages and Files
Members
home
prob5-1 (team 1)
prob5-13 (team 1)
prob5-25 (team 1)
prob6-1 (team1)
prob6.13 (team 1)
prob7-1 (team1)
prob7-37 (team1)
prob7-49 (team1)
prob7.104 (team1)
prob7.85 (team1)
Edit
0
1
…
0
Tags
No tags
edit
Save
Cancel
Notify
RSS
Backlinks
Source
Print
Export (PDF)
7.85: the 44-mm diamater shaft AB is made of a grade of steel for which the yield strength is stress yield= 250 MPA using the maximum-shearing -stress-criterion .determine the magnitude of the force P for yield occurs when T=1.5 KN.m.
solution
:
stress(y)=0
stress(x)=P/A
Txy=(Tc/J)
Txy=(1.5*1000*22*10^-3/0.5*3.14*(22*10^-3)^4)
=89.68 MPA
Tmax=0.5*stress yield=0.5*250 = 125 MPA
(Tmax)^2=(Txy)^2+(stressx-c)
(125)^2-(89.68)^2=0.5*stressx
stress x=174.155 MPA
P=stressx *A
P=174.155*10^6*(3.14/4)(.044)^2
P=264.8 KN
Javascript Required
You need to enable Javascript in your browser to edit pages.
help on how to format text
Turn off "Getting Started"
Home
...
Loading...
stress(y)=0
stress(x)=P/A
Txy=(Tc/J)
Txy=(1.5*1000*22*10^-3/0.5*3.14*(22*10^-3)^4)
=89.68 MPA
Tmax=0.5*stress yield=0.5*250 = 125 MPA
(Tmax)^2=(Txy)^2+(stressx-c)
(125)^2-(89.68)^2=0.5*stressx
stress x=174.155 MPA
P=stressx *A
P=174.155*10^6*(3.14/4)(.044)^2
P=264.8 KN